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• Make KNL run my code faster!

• Vectorization

• Cache blocking

• --exclusive

Outline
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• Many KNL-specific optimizations involve MCDRAM in “Flat” mode

• Since Cori uses “cache” mode, these optimizations generally do not apply

• If application can strong scale efficiently, can use enough nodes such that the 
memory footprint/node is less than 16 GB and fit into MCDRAM

• KNL is an x86 processor, thus many of the things you would do for any x86 
processor will apply 

• i.e., work done to improve KNL performance will generally improve 
performance on other modern processors as well

Optimizing for Intel Xeon Phi Knights Landing
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• Strengths

• MCDRAM memory bandwidth

• Effectively a large L3 in “cache” mode (no dedicated L3 on KNL)

• Larger L2 per core (1 MB / 2-core tile)

• AVX512 vectors

• Allows more operations per cycle than previous generations of processors

• Weaknesses

• Clock GHz

• Affects scalar operations

• Optimization strategy

• Vectorize and/or cache block important kernels
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KNL strengths and weaknesses
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But first, a note about affinity…
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The following NERSC slides 
stolen from Helen.  Thanks Helen!
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• XTHI is a very useful application that will tell you whether or not you are getting 
the expected placement behavior.

• https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

• Different compilers and MPI stacks have different affinity rules

• i.e., what works for Intel likely will not work for Cray or GNU

• Replace the call to your application binary to the xthi binary in your srun line to 
check affinity.

• Can do this at any scale, but it’s best to change the number of PEs to use a 
single node to avoid confusion of the output.
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xthi.c

https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c
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• Verify with XTHI before running your code!
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But second… Dynamic vs Static linking on KNL
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• Lines 248 – 249 in qb.C require glibc, which is a collection of dynamic libraries in 
many current operating systems

• if ( getlogin() != 0 ) 
cout << "<user> " << getlogin() << " </user>" << endl;

• Performance can be greatly increased on KNL for statically linked executables. 

15

Dynamic vs Static Linking for Qbox on KNL
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• Can statically link in Cray Libsci libraries (executable remains dynamic) to alleviate some 
of the performance loss by setting:

• LIBS = -Wl,-Bstatic -lsci_cray_mpi_mp -lsci_cray_mp \
-lfftw3f_mpi -lfftw3f_omp -lfftw3f -lfftw3_mpi \
-lfftw3_omp -lfftw3 -Wl,-Bdynamic

• Or compile fully static but add extra compile flags to qb.C:

• '-Dmain=stealthy(){return 0;} char* stealth(){return getenv("USER");} int main' -
Dgetlogin=stealth

• Or one could simply modify the code in qb.C to use getenv() instead of getlogin() and 
compile fully static.

16

Options to link statically
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• For a 256 node, 880 atom Qbox run using 32 MPI ranks/node and 2 OpenMP
threads/rank with nrowmax set to 256 yields the following results:
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Dynamic vs Static Linking for Qbox on KNL

Link type Dynamic 

Linking

Static 

Linking

Dynamic Linking 

with Statically 

Linked Cray 

Libsci libraries

max time 

(run time)

330 s 198 s 215 s
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Example 
Analys is  and 
Opt imizat ions:

Vectorization

18
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• Vectorization is the practice of converting an algorithm to work on a set of values 
simultaneously instead of a single value one-by-one.

19

What is vectorization?

What prevents vectorization?

• Complexity in loops which the compiler can not interpret

• Indirect memory accesses

• Logical statements

• Recurrences on variables
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• CCE can provide “listing” files with 
compilation which will give an easily 
interpreted and detailed description 
of every line in your source

• -hlist=a

• Intel and GNU compiler provide 
similar capabilities.

• Use the listing file to determine if 
your changes allow the compiler to 
apply better optimizations

• You do NOT need to execute the 
code to check if the compiler 
applies optimizations

20

How To Know If Your Loops Are Vectorizing
%%%    L o o p m a r k   L e g e n d    %%%

Primary Loop Type        Modifiers

------- ---- ---- ---------

A - Pattern matched      a - atomic memory operation

b – blocked

C - Collapsed            c - conditional and/or computed

D - Deleted          

E - Cloned              

F - Flat - No calls      f – fused

G - Accelerated          g – partitioned

I - Inlined i – interchanged

M - Multithreaded        m – partitioned

n - non-blocking remote transfer

p – partial

R - Rerolling            r – unrolled

s – shortloop

V - Vectorized w – unwound

+ - More messages listed at end of listing

------------------------------------------
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• There is a recurrence on the scalar ‘PF’

• Use the ‘explain’ tool to learn more about what a recurrence is

Example Loop

67.    1 2            PF = 0.0

68.  + 1 2 3--<       DO 44030 I = 2, N

69.    1 2 3           AV   = B(I) * RV

70.    1 2 3           PB   = PF

71.    1 2 3           PF   = C(I)

72.    1 2 3           IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)

73.    1 2 3           AA   = E(I) - E(I-1) + F(I) - F(I-1)

74.    1 2 3         1      + G(I) + G(I-1) - H(I) - H(I-1)

75.    1 2 3           BB   = R(I) + S(I-1) + T(I) + T(I-1)

76.    1 2 3         1      - U(I) - U(I-1) + V(I) + V(I-1)

77.    1 2 3         2      - W(I) + W(I-1) - X(I) + X(I-1)

78.    1 2 3           A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I)

79.    1 2 3--> 44030 CONTINUE

ftn-6254 ftn: VECTOR LP44030, File = lp44030.f, Line = 68

A loop starting at line 68 was not vectorized because a recurrence was found on "pf" 

at line 71.

> explain ftn-6254  
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Example
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What’s Preventing Vectorization?

• Let’s do a vector dependency analysis assuming VL=2

• Vectorization may be possible with modification, but loop is not concurrent safe

𝑃𝐵
2
3

∝ 𝑃𝐹
1
2

68.  + 1 2 3--<       DO 44030 I = 2, N

…   

70.    1 2 3           PB   = PF

71.    1 2 3           PF   = C(I)

72.    1 2 3           IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)

…

78.    1 2 3           A(I) = AV * (AA + BB + PF - PB + Y(I) - Z(I)) + A(I)

𝑃𝐹
2
3

∝ 𝐶
2
3
4

A
2
3

∝ 𝑃𝐵, 𝑃𝐹 → 𝑃𝐹
1
2
3

Compiler would promote

scalars to vectors

Compiler will not promote

PF to a 3 element vector
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• Convert PF from a scalar to a vector (1-D array)

• Warning!  Be cognizant of how changing this variable may affect other 
regions of the code

• Is PF a global or local variable? Is the final result of PF used 
elsewhere?

• May need to use a temporary variable array for the loop and store 
back into PF if needed

• Eliminates the need for the PB scalar variable in the loop

What can we do to vectorize this loop?
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• What optimizations did the compiler apply to our new version?

• How does the performance of this version compare with the original?

Optimization changes

66.    1 2              VPF(1) = 0.0

67.    1 2 Vr2--<       DO 44031 I = 2, N

68.    1 2 Vr2           AV     = B(I) * RV

69.    1 2 Vr2           VPF(I) = C(I)

70.    1 2 Vr2           IF ((D(I) + D(I+1)) .LT. 0.) VPF(I) = -C(I+1)

71.    1 2 Vr2           AA   = E(I) - E(I-1) + F(I) - F(I-1)

72.    1 2 Vr2         1      + G(I) + G(I-1) - H(I) - H(I-1)

73.    1 2 Vr2           BB   = R(I) + S(I-1) + T(I) + T(I-1)

74.    1 2 Vr2         1      - U(I) - U(I-1) + V(I) + V(I-1)

75.    1 2 Vr2         2      - W(I) + W(I-1) - X(I) + X(I-1)

76.    1 2 Vr2           A(I) = AV * (AA + BB + VPF(I) - VPF(I-1) + Y(I) - Z(I)) + 

A(I)

77.    1 2 Vr2--> 44031 CONTINUE

ftn-6005 ftn: SCALAR LP44030, File = lp44030.f, Line = 67

A loop starting at line 67 was unrolled 2 times.

ftn-6204 ftn: VECTOR LP44030, File = lp44030.f, Line = 67

A loop starting at line 67 was vectorized.
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Original vs Vectorized performance
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Example 
Analys is  and 
Opt imizat ions:

Cache blocking

27



© 2019 Cray Inc.

• Data reuse will be critical to performance 

• Reuse out of MCDRAM will reduce requirements on main memory

• Reuse out of lower levels of cache will  lower requirements on MCDRAM

• In order to know how to cache block properly we need to know the trip counts of 
loops and the sizes of various arrays as accurately as possible

28

Data Reuse will be important
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A SIMPLE EXAMPLE

• 2D 5-point Laplacian

do j = 1, 8
do i = 1, 16

d(i,j) =   u(i-1,j) + u(i+1,j) &
- 4*u(i,j)            &
+ u(i,j-1) + u(i,j+1)

end do
end do

• Simple cache structure for this example:

• Assume each cache line holds 4 array elements

• And cache can hold 12 lines of u data

• No cache reuse between outer loop iterations

29

34679101213151830120
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BLOCKING = STRIPMINE + INTERCHANGE

do j = 1, 8
do i = 1, 16

d(i,j) = stencil
end do

end do

Stripmine

do j = 1, 8
do IBLOCK = 1, 16, 4

do i = IBLOCK, IBLOCK+3
d(i,j) = stencil

end do
end do

end do

Interchange

do IBLOCK = 1, 16, 4
do j = 1, 8

do i = IBLOCK, IBLOCK+3
d(i,j) = stencil

end do
end do

end do
Blocked!

30
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BLOCKING TO INCREASE REUSE

31

3467891011122080

• Block the inner loop

do IBLOCK = 1, 16, 4

do j = 1, 8

do i = IBLOCK, IBLOCK + 3

d(i,j) =   u(i-1,j) + u(i+1,j) &

- 4*u(i,j)            &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

• Now we have reuse of the j+1 data
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EVEN BETTER!

32

• Iterate over 4×4 blocks for better spatial locality

do JBLOCK = 1, 8, 4

do IBLOCK = 1, 16, 4

do j = JBLOCK, JBLOCK + 3

do i = IBLOCK, IBLOCK + 3

d(i,j) =   u(i-1,j) + u(i+1,j) &

- 4*u(i,j)            &

+ u(i,j-1) + u(i,j+1)

end do

end do

end do

end do

• CCE has directives for this

• !dir$ blockable(i,j)

• !dir$ blockingsize(4)

34678910111213151617183060
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Example 
Analys is  and 
Opt imizat ion:

miniGhost

33



© 2019 Cray Inc.

• “mini-app” from the NERSC8 procurement.

• 27-point 3-D stencil application

• Simulates diffusion

• Like most stencil codes, it is main memory bandwidth bound

• Data reuse will lessen contention for memory accesses

34

Example app: miniGhost
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• Craypat suggests the following loop is about ~50% of the run time

• CCE does vectorize and also attempts to cache block the inner loop, but can we 
do better?

35

Main compute loop
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• CCE may attempt to cache block for L2 based upon the targeted architecture.

• Generally, L1 is too small and L3 is too “slow”

36

Listing file explanations
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Blocking = Stripmine + Interchange 
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Listing file explanations
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• Typically, you want a larger amount of the inner iteration with smaller amounts in 
the other loops

• Depends on the loop characterization and what data should be / could be / 
need to be reused

• Powers of 2 generally are best if full index can not be held in cache

• Depending on the particular problem size, a proper cache blocking can provide a 
50% speed-up for this particular loop on KNL

• May see smaller impact on earlier Xeon processors since L2 misses are 
supported by an L3 cache.

39

How to set the correct block sizes
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• Code Characterization is an important first step in preparing for KNL

• Target Science

• Target Scaling

• Hotspot identification

• Process affinity is critical for run performance

• Statically linked binaries likely to perform better than dynamically linked binaries.

• KNL node is different from XEON node

• Single node optimizations will be an early focus

• A properly designed kernel will help with optimization efforts

• Vectorization is important and will become even more so with future processors

• Data reuse is important, but how important will depend on memory footprints and access patterns

40

Summary
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